Determination of the Relative and Absolute Stereochemistry of Fostriecin (CI-920)

Dale L. Boger,* Masataka Hikota, and Bryan M. Lewis
Department of Chemistry and The Skaggs Institute of Chemi cal Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La J olla, California 92037
Received November 19, 1996^{\circledR}

Abstract

The absolute stereochemistry of fostriecin ($\mathbf{1}, \mathrm{Cl}-920$), a potent antitumor antibiotic presently in Phase I clinical trials at NCI , was determined to be $5 \mathrm{R}, 8 \mathrm{R}, 9 \mathrm{R}, 11 \mathrm{R}$. $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NMR NOE experiments conducted on the cyclic phosphate derivative $\mathbf{2}$ and acetonide $\mathbf{4}$ revealed a syn-diol stereochemical relationship between C8 and C9 and an anti-diol stereochemical relationship between C9 and C11, respectively. The 5R absolute configuration assignment was confirmed by synthesis of the degradation product $\mathbf{8}$ previously disclosed. Additional degradation studies of $\mathbf{1}$ to provide 7 and chiral-phase HPLC comparison with a sample of known chirality established the absolute stereochemistry of C11 to beR. This, along with the relative stereochemical assignments established the full set of absolute stereochemistry assignments for $\mathbf{1}$.

Fostriecin ($\mathbf{1}, \mathrm{Cl}-920)^{1}$ is a structurally novel phosphate ester produced by Streptomyces pulveraceus active in vitro against leukemia (L1210, $\mathrm{IC}_{50} 0.46 \mu \mathrm{M}$), lung, breast, and ovarian cancer and displays efficacious in vivo antitumor activity against L1210 leukemia in mice. ${ }^{2}$ It is currently being investigated in phase I clinical trials at NCI. Fostriecin inhibits DNA topoisomerase II (IC C_{50} $40 \mu \mathrm{M}$) in vitro ${ }^{3}$ through a novel, non-DNA-strand cleaving mechanism, but does not induce G_{2} arrest like other topoisomerase II inhibitors. ${ }^{4}$ Instead, it inhibits the mitotic entry check point, ${ }^{5}$ potentially through inhibition of protein phosphatases 1 and $2 \mathrm{~A}\left(\mathrm{IC}_{50} 4 \mu \mathrm{M}\right.$ and 40 nM , respectively). ${ }^{6-9}$ Inhibition of the mitotic entry checkpoint and protein phosphatase are novel properties for a potential clinical antitumor agent. Despite these proper-

[^0]

Figure 1.

Scheme 1. Preparation of the Cyclic Phosphate Diester

ties and the clinical potential of $\mathbf{1}$, the complete relative and absolute stereochemistry of the molecule is unknown. ${ }^{10,11}$ Herein, we detail studies that provide the relative and absolute stereochemistry of fostriedin (Figure 1).

Although the 5R absolute stereochemistry of $\mathbf{1}$ was established in the work leading to the basic tenants of the structure determination, ${ }^{10}$ the relative and absol ute stereochemistry at C8, C9, and C11 are unknown. The relative stereochemistry between C8 and C9 was determined as follows (Scheme 1). The natural product 1 was converted to the five-membered cyclic phosphodiester 2 (p-bromobenzoyl chloride, pyridine, $0^{\circ} \mathrm{C}, 70 \%$)..12 The closure to 2 was established by ${ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 161 \mathrm{MHz}$, δ) with the observance of a signal at 14.69 characteristic of a five-membered ($10-15$) versus six-membered (-0.5 to -5.0) cydic phosphodiester. ${ }^{13}$ Upon examination of the 2D ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ ROESY NMR spectrum ($\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}$, $\delta)$, NOEs were found between $\mathrm{H}_{6,7}(5.93-6.00)$ and H_{9} (4.34), as well as between the $\mathrm{C} 8-\mathrm{CH}_{3}(1.40)$ and H_{10}

[^1]
Scheme 2. Preparation of the Six-Membered Ring Acetonide

(1.75-1.90), establishing the cis relationships of the C5C 8 vinyl side chain with H_{9} and $\mathrm{C} 8-\mathrm{CH}_{3}$ with the C 9 side chain on the five-membered cyclic phosphodiester and a syn-1,2-diol relationship between C8 and C9.

The relative stereochemistry between C9 and C11 was determined as follows (Scheme 2). The free al cohol $\mathbf{3}$ was prepared from 1 (alkaline phosphatase, $\mathrm{H}_{2} \mathrm{O}, 37{ }^{\circ} \mathrm{C}$, 100%) according to the procedure of Hokanson and French ${ }^{10}$ and was converted to the acetonide 4 ($\mathrm{Me}_{2} \mathrm{C}$ (OMe) ${ }_{2}$ p-TsOH, THF, $25{ }^{\circ} \mathrm{C}, 10-15 \mathrm{~min}, 40 \%$). The preferential formation of 4 was antiapated and controlled by use of short reaction times ($10-15 \mathrm{~min}$) favoring the kinetic six-membered 1,3-diol acetonide. ${ }^{14}$ The alternative possibility of five-membered acetonide formation between C8 and C9 was excluded by the subsequent clean conversion of 4 to monoacetate 5^{14} (excess $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}$) versus a diacetate diagnostic of the 1,2-diol acetonide and ultimately confirmed spectroscopically. Extending the reaction time to 1 h led to the generation of small amounts of the five-membered 1,2diol acetonide (9\%) without improving the conversion to 4 (42\%).

The acetonide methyl groups of 4 (1.35 and 1.39) displayed similar ${ }^{13} \mathrm{C}$ NMR chemical shifts of 24.49 and $24.89\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}, \delta\right)$ within the range characteristic of an anti-1,3-diol acetonide (23.96-25.22) and different from the distinct chemical shifts observed with syn-1,3diol acetonides (18.67-19.98 and 29.74-30.16). ${ }^{15}$ In addition, diagnostic cross-peaks observed in the 2D ${ }^{1} \mathrm{H}-$ ${ }^{1} \mathrm{H}$ NOESY NMR spectrum of 4 were observed between one acetonide methyl group (1.35) and H_{9} (3.72) and between the other acetonide methyl group (1.39) and H_{11} (4.73) (\mathbf{A}, Figure 2). This agrees with the existence of an anti-1,3-diol derived acetonide adopting a twist boat conformation. Consistent with this assignment, $\mathrm{H}_{9}\left(\mathrm{~J}\left(\mathrm{H}_{10}\right)\right.$ $=6.3,9.6 \mathrm{~Hz})$ and $\mathrm{H}_{11}\left(\mathrm{~J}\left(\mathrm{H}_{10}\right)=6.3,9.5 \mathrm{~Hz}\right)$ exhibit ${ }^{1} \mathrm{H}$ NMR coupling constants expected with the twist boat conformation and the observed NOEs. Additionally, the alternative syn-1,3-diol-derived acetonide B would be supported by the observance of three other diagnostic NOEs, one between H_{9} and H_{11} and those between the

[^2]

B 1,3-syn

Figure 2.

A

B

Favored

Figure 3.

Scheme 3. Degradation of F ostriecin

1) TBDPSCI, imidazole, DMF
2) $\mathrm{NaIO}_{4}, \mathrm{CH}_{3} \mathrm{OH}$, $\mathrm{H}_{2} \mathrm{O} ; \mathrm{NaBH}_{4}$

3

6

1) $\mathrm{O}_{3}, \mathrm{CH}_{3} \mathrm{OH}$; NaBH_{4}
2) $\mathrm{BzCl}, \mathrm{Et}_{3} \mathrm{~N}$,

DMAP, THF

one axial methyl group of the acetonide and both H_{9} and H_{11}. These cross-peaks were not observed in the 2D ${ }^{1} \mathrm{H}-$ ${ }^{1} \mathrm{H}$ NOESY NMR spectrum. From these results which further confirmed the structure of the 1,3- versus 1,2acetonide, we assigned the relative stereochemistry of the C8-C9 and C9-C11 stereocenters of fostriecin as a syn1,2 and an anti-1,3-diol relationship, respectively.

This proved to be consistent with the adoption of a rigid, hydrogen-bonded cyclic structure for 1 and $3\left(\mathrm{D}_{2} \mathrm{O}\right.$, 400 MHz) involving the C9 oxygen substituent and the C 11 al cohol which is disrupted upon O-acetylation. ${ }^{10}$ Our examination of the coupling constants of $\mathrm{H}_{9}, \mathrm{H}_{10 \mathrm{~A}}, \mathrm{H}_{108}$, and H_{11} in 3 had provided us with a preliminary assessment of the anti-1,3-diol relationship of C9/C11 adopting a twist boat for the hydrogen-bonded structure (Figure 3).

The final task was the determination of the absolute stereochemistry at C11, which when coupled with the relative stereochemistry detailed above and the prior work of Hokanson and French assigning the C5 R configuration, ${ }^{10}$ would establish the complete absolute stereochemistry of fostriecin (Scheme 3). The free al cohol 3 was cleanly monosilylated (TBDPSCI, imidazole, DMF , $25^{\circ} \mathrm{C}, 72 \%$) and subjected to oxidative cleavage of the

Scheme 4. Preparation of Methyl Ketone Derived from Fostriecin

$\mathrm{C} 8, \mathrm{C} 9-\mathrm{diol}\left(\mathrm{NaIO}_{4}, \mathrm{CH}_{3} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}\right.$). Immediate reduction ($\mathrm{NaBH}_{4}, 65 \%$ for two steps) of the resulting aldehyde to the diol, and its protection as the dibenzoate ($\mathrm{BzCl}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 65 \%$) gave 6. The dibenzoate was subjected to ozonolysis followed by reductive workup (O_{3}, $\mathrm{CH}_{3} \mathrm{OH} ; \mathrm{NaBH}_{4}$) and benzoylation ($\mathrm{BzCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}$, THF , 65\%) to yield the tribenzoate 7. This material was identical (NMR, IR, MS) to the (R)-(+)-tri benzoate 7 and the (\pm)-tribenzoate prepared from commercially available R-(+)-1,2,4-butanetriol and (\pm)-1,2,4-butanetriol, respectively, and eluted on an analytical Chiracel OD-H HPLC column ($0.46 \times 20 \mathrm{~cm}, 20 \%$ 2-PrOH/hexane, $0.6 \mathrm{~mL} / \mathrm{min}$) with the same retention time as (2R)-7 (11.4 min) versus (2S)-7 (18.4 min). This, combined with the relative configuration assignments, provided the complete relative and absolute stereochemical determination of fostriecin as $5 \mathrm{R}, 8 \mathrm{R}, 9 \mathrm{R}, 11 \mathrm{R}$. ${ }^{16}$

Finally, in conjunction with our synthetic efforts on 1 we have conducted a correlation (Scheme4) that confirms the C5 absolute stereochemical assignment of Hokanson and French. ${ }^{10}$ The absolute configuration at C5 was introduced through Sharpless asymmetric dihydroxylation of a terminal olefin. ${ }^{19}$ Thus, conversion of hex-5enoic acid ${ }^{20}$ (9) to the corresponding p-methoxybenzyl

[^3]ester $\mathbf{1 0}$ followed by asymmetric dihydroxylation (3 equiv of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, 3$ equiv of $\mathrm{NaHCO}_{3}, 3$ equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}, 0.05$ equiv of (DHQD) $)_{2}-A Q N,{ }^{21} \mathrm{t}-\mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O} 1: 1,0^{\circ} \mathrm{C}, 48 \mathrm{~h}$, $79 \%, 88-92 \%$ ee) provided the diol 11. Enrichment to $>98 \%$ ee was accomplished by one recrystallization ($>50 \%$ overall, $\mathrm{Et}_{2} \mathrm{O}$) ${ }^{22}$ and conveniently monitored by ${ }^{1} \mathrm{H}$ NMR analysis $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ of the corresponding bis-Mosher ester (2.3 equiv of (R)-MTPA-CI, 3 equiv of DMAP, THF , $25^{\circ} \mathrm{C}, 6 \mathrm{~h}$). Subsequent selective protection of the primary alcohol $\mathbf{1 1}$ (1.1 equiv of TBDPSCI, 2.2 equiv of imidazole, DMF, $25^{\circ} \mathrm{C}, 15 \mathrm{~h}, 89-92 \%$) cleanly provided 12 and acid-catalyzed Iactonization (4 equiv of $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, 5$ equiv of anisole, $25^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 75 \%$) afforded 13. Formation of the α-phenylselenyl lactone 14 (1.1 equiv of LDA; 1.2 equiv of $\mathrm{PhSeBr}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, 50%), deprotection of the TBDPS ether (1.9 equiv of Bu_{4-} NF, 5.8 equiv of HOAc, THF, $25{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 68 \%$) and oxidation of 15 to the selenoxide (4 equiv of $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{CH}_{2^{-}}$ $\mathrm{Cl}_{2}-\mathrm{H}_{2} \mathrm{O}, 25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 85 \%$) followed by elimination provided the unsaturated lactone al cohol 16, $[\alpha]^{20}{ }_{D}+160$ (c $0.85, \mathrm{CHCl}_{3}$), lit. ${ }^{23}[\alpha]^{26} \mathrm{D}+175$ (c $0.92, \mathrm{CHCl}_{3}$). The correlation of our synthetic $\mathbf{1 6}$ with authentic $\mathbf{1 6}^{23}$ of known absolute configuration established that the Sharpless asymmetric dihydroxylation proceeded with the expected enantioselectivity. Swern oxidation of 16 (10 equiv of $(\mathrm{COCl})_{2}, 12$ equiv of DMSO, 35 equiv of $E t_{3} \mathrm{~N}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$) followed by in situ reaction of $\mathbf{1 7}$ with the stabilized Wittig reagent (15 equiv, $0^{\circ} \mathrm{C}$, 30 min , 52% overall) provided $8\left([\alpha]^{20} \mathrm{D}+201\left(\mathrm{c} 0.110, \mathrm{CHCl}_{3}\right)\right.$, identical in all respects with the degradation product $\mathbf{8}^{10}\left([\alpha]_{D}\right.$ +217 ($\mathrm{c} 1.16, \mathrm{CHCl}_{3}$) obtained from fostriecin. This latter correlation confirmed the C5 stereochemical assignment of Hokanson and French and provided an advanced synthetic intermediate in our approach to fostriecin. These and related efforts will be disclosed in due time.

Experimental Section

(1E ,3R ,4R,6R ,7Z,9Z,11E)-1-[(6R)-2-0xo-5,6-dihydro-2H-pyran-6-yl]-3,4,6,13-tetrahydroxy-3-methyl-1,7,9,11-tridecatetraene 3,4-Cyclophosphate, Sodium Salt (2). A solution of fostriecin ($1,2 \mathrm{mg}, 4.4 \mathrm{mmol}$) in pyridine ($500 \mu \mathrm{~L}$) was treated at $0{ }^{\circ} \mathrm{C}$ (ice bath) with p-bromobenzoyl chloride ($1.9 \mathrm{mg}, 8.5 \mu \mathrm{~mol}$), and the mixture was allowed to stir for 45 min at $0^{\circ} \mathrm{C}$. The reaction mixture was concentrated and purified by chromatography on reverse phase silica ($0-10 \%$ $\mathrm{CH}_{3} \mathrm{CN}-\mathrm{H}_{2} \mathrm{O}$) to yield 2 ($1.34 \mathrm{mg}, 1.8 \mathrm{mg}$ theoretical, 70%): ${ }^{1} \mathrm{H} N \mathrm{NMR}\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right) \delta 7.12$ (1 H , ddd, $\mathrm{J}=3.1,5.6,9.8$ $\mathrm{Hz}), 6.79(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.0,15.3 \mathrm{~Hz}), 6.64(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11.0$ $\mathrm{Hz}), 6.35(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11.0 \mathrm{~Hz}), 6.19(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11.0 \mathrm{~Hz}), 6.08$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.9,15.3 \mathrm{~Hz}), 6.03(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=1.2,2.3,9.8 \mathrm{~Hz})$, $6.00-5.93(2 \mathrm{H}, \mathrm{m}), 5.56(1 \mathrm{H}, \mathrm{t}, 9.4 \mathrm{~Hz}), 5.12(1 \mathrm{H}$, ddd, J = $5.3,5.4,10.2 \mathrm{~Hz}), 4.34(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.4,9.3 \mathrm{~Hz}), 4.18(2 \mathrm{H}, \mathrm{d}$, $\mathrm{J}=5.9 \mathrm{~Hz}), 2.65-2.58(1 \mathrm{H}$, ddd, $\mathrm{J}=5.1,5.2,18.8 \mathrm{~Hz}), 2.56-$ $2.52(1 \mathrm{H}$, dddd, $\mathrm{J}=3,3,10.7,18.8 \mathrm{~Hz}), 1.90-1.75(2 \mathrm{H}, \mathrm{m})$, $1.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 125 \mathrm{MHz}\right) \delta 170.4,151.8,137.1$, 136.7, 135.7, 133.8, 132.0, 128.7, 127.9, 126.5, 122.2, 87.4, 83.2, 80.9, 66.4, 64.8, 39.6, 31.6, 21.8; ${ }^{31 \mathrm{P}} \mathrm{NMR}\left(161 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta$ 14.69; IR (neat) $v_{\max } 3358,2920,1709,1383,1247,1221,1109$, 1054, 972, 942, 876, $820 \mathrm{~cm}^{-1}$; FABHRMS (NBA-Nal) m/ z $435.1197\left(\mathrm{M}+\mathrm{Na}^{+}, \mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{8} \mathrm{P}\right.$ requires 435.1185).

[^4]The 2D ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ ROESY NMR spectrum $\left(\mathrm{D}_{2} \mathrm{O}, 400 \mathrm{MHz}\right)$ of 2 displayed the following diagnostic NOE cross-peaks: $\mathrm{H}_{2} / \mathrm{H}_{3}$, $\mathrm{H}_{3} / \mathrm{H}_{4}, \mathrm{H}_{4} / \mathrm{H}_{5}, \mathrm{H}_{6,7} / \mathrm{H}_{9}, \mathrm{H}_{6,7} / \mathrm{H}_{15}, \mathrm{H}_{6,7} / \mathrm{H}_{16}, \mathrm{H}_{6,7} / \mathrm{H}_{17}, \mathrm{H}_{6,7} / \mathrm{H}_{19}, \mathrm{H}_{9} /$ $\mathrm{H}_{10}, \mathrm{H}_{9} / \mathrm{H}_{12}, \mathrm{H}_{9} / \mathrm{H}_{17}, \mathrm{H}_{10} / \mathrm{H}_{19}, \mathrm{H}_{12} / \mathrm{H}_{13}, \mathrm{H}_{12} / \mathrm{H}_{14}, \mathrm{H}_{13} / \mathrm{H}_{16}, \mathrm{H}_{14} / \mathrm{H}_{15}$, $\mathrm{H}_{14} / \mathrm{H}_{16}$.
(R)-6-[(1E ,3R ,4R ,6R ,7Z,9Z,11E)-3,4,6,13-Tetrahydroxy-4,6-O-isopropylidene-3-methyl-1,7,9,11-tridecatetraen-1-yl]-5,6-dihydro-2H-pyran-2-one (4). A suspension of 3 (1.0 $\mathrm{mg}, 2.9 \mu \mathrm{~mol})$ in THF (1.0 mL) was treated with 2,2-dimethoxypropane ($15 \mu \mathrm{~L}, 0.12 \mathrm{mmol}$), followed by a catalytic amount of anhydrous $\mathrm{p}-\mathrm{TsOH}$ at $25^{\circ} \mathrm{C}$. After 10 min of stirring, 3 drops of $E t_{3} \mathrm{~N}$ was added, and the mixture was concentrated in vacuo. PTLC $\left(\mathrm{SiO}_{2}, 50 \%\right.$ EtOAc-hexane) gave $4(0.4 \mathrm{mg}$, 1.1 mg theoretical, 40%) as a col orless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $600 \mathrm{MHz}) \delta 6.87\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{J}=3.1,5.4,12.7 \mathrm{~Hz}, \mathrm{H}_{3}\right), 6.71(1 \mathrm{H}$, dd, J $\left.=11.4,15.2 \mathrm{~Hz}, \mathrm{H}_{16}\right), 6.52\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11.4 \mathrm{~Hz}, \mathrm{H}_{13}\right), 6.20$ $\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11.4 \mathrm{~Hz}, \mathrm{H}_{14}\right), 6.09\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11.4 \mathrm{~Hz}, \mathrm{H}_{15}\right), 6.05$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=12.7 \mathrm{~Hz}, \mathrm{H}_{2}\right), 5.96-5.85\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{6}, \mathrm{H}_{7}\right.$ and $\left.\mathrm{H}_{17}\right)$, $5.51\left(1 \mathrm{H}\right.$, rough dd, $\left.\mathrm{H}_{12}\right), 4.96\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=10.3,4.7 \mathrm{~Hz}, \mathrm{H}_{5}\right)$, 4.75-4.70 (1H, m, H ${ }_{11}$), $4.24\left(2 \mathrm{H}\right.$, br s, $\left.\mathrm{H}_{18}\right), 3.72(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=$ $\left.6.3,9.6 \mathrm{~Hz}, \mathrm{H}_{9}\right), 2.50-2.38\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}_{4}\right), 2.30\left(1 \mathrm{H}, \mathrm{s}, \mathrm{C}_{8}-\mathrm{OH}\right)$, $1.99\left(1 \mathrm{H}\right.$, ddd, $\left.\mathrm{J}=6.3,9.6,12.9 \mathrm{~Hz}, \mathrm{H}_{10}\right), 1.64(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ $\left.6.3,9.5,12.9 \mathrm{~Hz}, \mathrm{H}_{10}\right), 1.39\left(3 \mathrm{H}, \mathrm{s}\right.$, acetonide $\left.\mathrm{CH}_{3}\right), 1.35(3 \mathrm{H}$, s , acetonide $\left.\mathrm{CH}_{3}\right), 1.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ MHz) $\delta 163.9,144.5,138.0,134.5,131.8,130.4,126.1,125.7$, $124.9,123.9,121.7,100.8,77.3,73.6,71.7,63.6,63.3,33.2,29.9$, 24.9, 24.5, 22.3; IR (neat) $v_{\max } 3440,2985,2930,1715,1380$, 1225, 1060, $1020 \mathrm{~cm}^{-1}$; FABHRMS (NBA-Nal) m/ z 413.1952 $\left(\mathrm{M}+\mathrm{Na}^{+}, \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{6}\right.$ requires 413.1940).

The 2D ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY NMR spectrum $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ of $\mathbf{4}$ displayed the following diagnostic NOE cross-peaks: $\mathrm{H}_{2} /$ $\mathrm{H}_{3}, \mathrm{H}_{3} / \mathrm{H}_{4}, \mathrm{H}_{4} / \mathrm{H}_{5}, \mathrm{H}_{4} / \mathrm{H}_{6}, \mathrm{H}_{5} / \mathrm{H}_{6}, \mathrm{H}_{7} / \mathrm{H}_{9}, \mathrm{H}_{7} / \mathrm{H}_{19}, \mathrm{H}_{9} / \mathrm{H}_{10}, \mathrm{H}_{9} / \mathrm{H}_{19}$, $\mathrm{H}_{9} /$ acetonide methyl ($\delta 1.35$), $\mathrm{H}_{10} / \mathrm{H}_{11}, \mathrm{H}_{10} / \mathrm{H}_{12}, \mathrm{H}_{10} / \mathrm{H}_{19}, \mathrm{H}_{11} /$ $\mathrm{H}_{14}, \mathrm{H}_{11}$ /acetonide methyl ($\delta 1.39$), $\mathrm{H}_{12} / \mathrm{H}_{13}, \mathrm{H}_{13} / \mathrm{H}_{14}, \mathrm{H}_{13} / \mathrm{H}_{16}$, $\mathrm{H}_{14} / \mathrm{H}_{15}, \mathrm{H}_{15} / \mathrm{H}_{17}, \mathrm{H}_{16} / \mathrm{H}_{18}, \mathrm{H}_{17} / \mathrm{H}_{18}$.

The 2D ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right)$ of 4 displayed the following diagnostic cross-peaks: $\mathrm{H}_{2}(\delta 6.05) / \mathrm{H}_{3}(\delta 6.87), \mathrm{H}_{3}$ $(\delta 6.87) / \mathrm{H}_{4}(\delta 2.38-2.50), \mathrm{H}_{4}(\delta 2.38-2.50) / \mathrm{H}_{5}(\delta 4.96), \mathrm{H}_{5}(\delta$ $4.96) / \mathrm{H}_{6}(\delta 5.85-5.89), \mathrm{H}_{9}(\delta 3.72) / \mathrm{H}_{10}(\delta 1.64$ and 1.99$), \mathrm{H}_{10}$ $(\delta 1.64$ and 1.99$) / \mathrm{H}_{11}(\delta 4.70-4.75), \mathrm{H}_{11}(\delta 4.70-4.75) / \mathrm{H}_{12}(\delta$ $5.51), \mathrm{H}_{12}(\delta 5.51) / \mathrm{H}_{13}(\delta 6.52), \mathrm{H}_{13}(\delta 6.52) / \mathrm{H}_{14}(\delta 6.20), \mathrm{H}_{14}(\delta$ $6.20) / \mathrm{H}_{15}(\delta 6.09), \mathrm{H}_{15}(\delta 6.09) / \mathrm{H}_{16}(\delta 6.71), \mathrm{H}_{16}(\delta 6.71) / \mathrm{H}_{17}(\delta$ $6.90-6.96), \mathrm{H}_{17}(\delta 6.90-6.96) / \mathrm{H}_{18}$ ($\delta 4.24$).

Alternatively, a suspension of $\mathbf{3}(4.9 \mathrm{mg}, 14 \mu \mathrm{~mol})$ in THF $(1.0 \mathrm{~mL})$ was treated with 2,2-dimethoxypropane ($30 \mu \mathrm{~L}, 0.24$ mmol), followed by catalytic anhydrous $\mathrm{p}-\mathrm{TsOH}$ at $25^{\circ} \mathrm{C}$. After $1 \mathrm{~h}, 3$ drops of $\mathrm{Et}_{3} \mathrm{~N}$ were added and the mixture was concentrated in vacuo. PTLC $\left(\mathrm{SiO}_{2}, 33 \% \mathrm{EtOAc}\right.$-hexane, elution $2 \times$) gave 4 ($2.3 \mathrm{mg}, 42 \%$), the corresponding primary alcohol acetal ($1.2 \mathrm{mg}, 19 \%$), the five-membered ring 1,2-diol acetonide ($0.48 \mathrm{mg}, 8.8 \%$), and its corresponding primary alcohol acetal ($0.30 \mathrm{mg}, 4.6 \%$), as colorless oils. ${ }^{25}$
(R)-6-[(1E ,3R ,4R ,6R ,7Z,9Z,11E)-13-[tert-B utyldiphenylsilyl)oxy]-3,4,6-trihydroxy-3-methyl-1,7,9,11-tridecatet-raen-1-yl]-5,6-dihydro-2H-pyran-2-one. A solution of 3 (6.3 $\mathrm{mg}, 18 \mu \mathrm{~mol})$ in DMF (0.5 mL) was treated with imidazole (3.7 $\mathrm{mg}, 54 \mu \mathrm{~mol})$ and TBDPSCI $(7.0 \mu \mathrm{~L}, 27 \mu \mathrm{~mol})$, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 min . This sequence was repeated twice. The reaction mixture was diluted with EtOAc (3 mL), washed successively with $\mathrm{H}_{2} \mathrm{O}(3 \times 1 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(1 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. Chromatography $\left(\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc}\right.$-hexane) provided the TBDPS ether ($7.6 \mathrm{mg}, 10.6 \mathrm{mg}$ theoretical, 72%) as a colorless oil: ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.70-7.65(4 \mathrm{H}$, $\mathrm{m}), 7.45-7.32(6 \mathrm{H}, \mathrm{m}), 6.87(1 \mathrm{H}$, ddd, $\mathrm{J}=3.1,5.3,9.7 \mathrm{~Hz})$, $6.77(1 \mathrm{H}, \mathrm{m}), 6.45(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11.5 \mathrm{~Hz}), 6.20(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11.5$ $\mathrm{Hz}), 6.08(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11.5 \mathrm{~Hz}), 6.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.7 \mathrm{~Hz}), 5.93$ $(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.7 \mathrm{~Hz}), 5.88(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.8,15.7 \mathrm{~Hz}), 5.84(1 \mathrm{H}$, m), $5.58(1 \mathrm{H}, \mathrm{t}), 5.00-4.92(2 \mathrm{H}, \mathrm{m}), 4.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=3.7 \mathrm{~Hz})$, $3.82(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=6.2,6.7 \mathrm{~Hz}), 3.00(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.55-2.35(2 \mathrm{H}$, $\mathrm{m}), 1.80-1.55(4 \mathrm{H}, \mathrm{m}), 1.25(3 \mathrm{H}, \mathrm{s}), 1.06(9 \mathrm{H}, \mathrm{s})$; IR (neat) $v_{\max }$ 3410, 2930, 2855, 1710, 1665, 1430, 1385, 1250, 1110, 1060,

[^5]970, 825, 740, $705 \mathrm{~cm}^{-1}$; FABHRMS (NBA-Csl) m/ z 721.1942 ($\mathrm{M}+\mathrm{Cs}^{+}, \mathrm{C}_{35} \mathrm{H}_{44} \mathrm{O}_{6}$ Si requires 721.1962).
(3R ,4Z,6Z,8E)-10-[(tert-Butyldiphenylsilyl)oxy]-4,6,8-decatriene-1,3-diol. A solution of the TBDPS ether (6.9 mg , $12 \mu \mathrm{~mol})$ described above in $\mathrm{CH}_{3} \mathrm{OH}(2.0 \mathrm{~mL})$ was treated with a solution of $\mathrm{NaI}_{4}(100 \mathrm{mg})$ in $\mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{~mL}, 385 \mu \mathrm{~L}, 18 \mu \mathrm{~mol})$ at $25^{\circ} \mathrm{C}$. After $4 \mathrm{~h}, \mathrm{NaBH}_{4}(5 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added at 0 ${ }^{\circ} \mathrm{C}$, and the mixture was stirred for $30 \mathrm{~min}\left(0^{\circ} \mathrm{C}\right)$ and $3 \mathrm{~h}(25$ $\left.{ }^{\circ} \mathrm{C}\right)$. The reaction mixture was diluted with $\mathrm{CHCl}_{3}(12 \mathrm{~mL})$, washed with saturated aqueous $\mathrm{NaCl}(2 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. Chromatography $\left(\mathrm{SiO}_{2}\right.$, 67% EtOAc-hexane) gave the diol ($3.2 \mathrm{mg}, 65 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}$) $\delta 7.68-7.65(4 \mathrm{H}, \mathrm{m}), 7.43-$ $7.37(6 \mathrm{H}, \mathrm{m}), 6.79(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.5,15.0 \mathrm{~Hz}), 6.43(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $11.5 \mathrm{~Hz}), 6.28(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11.5 \mathrm{~Hz}), 6.06(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11.5 \mathrm{~Hz})$, $5.83(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=15.0,5.0 \mathrm{~Hz}), 5.44(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=9.0,11.5 \mathrm{~Hz})$, 4.79-4.74 (1H, m), 4.29 (2H, d, J = 5.0 Hz$), 3.67(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=$ $12.5,6.5 \mathrm{~Hz}$), $3.61(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=12.5,6.5 \mathrm{~Hz}), 1.83-1.76(1 \mathrm{H}$, $\mathrm{m}), 1.68-1.61$ (1 H , rough dq), 1.06 ($9 \mathrm{H}, \mathrm{s}$); IR (neat) $v_{\text {max }} 3345$, 2930, 2860, 1470, 1430, 1110, $1060,700 \mathrm{~cm}^{-1}$; FABHRMS (NBA-CsI) m/z $555.1344\left(\mathrm{M}+\mathrm{Cs}^{+}, \mathrm{C}_{26} \mathrm{H}_{34} \mathrm{O}_{3} \mathrm{Si}\right.$ requires 555.1332).
($2 \mathrm{E}, 4 \mathrm{Z}, \mathrm{ZZ}, 8 \mathrm{R}$)-8,10-Bis(benzoyloxy)-1-[(tert-butyldiphen-ylsilyl)oxy]-2,4,6-decatriene (6). A solution of the diol (2.8 $\mathrm{mg}, 6.6 \mu \mathrm{~mol})$ described above in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ was treated with $\mathrm{Et}_{3} \mathrm{~N}(36 \mu \mathrm{~L}, 0.26 \mathrm{mmol}), \mathrm{BzCl}(10 \mu \mathrm{~L}, 86 \mu \mathrm{~mol})$ and a catalytic amount of DMAP, and the mixture was stirred at 25 ${ }^{\circ} \mathrm{C}$ overnight under $\mathrm{N}_{2} . \mathrm{CH}_{3} \mathrm{OH}(1.0 \mathrm{~mL})$ was added and after 30 min , the reaction mixture was diluted with EtOAc (10 mL), washed with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, saturated aqueous $\mathrm{NaCl}(2 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. Chromatography ($\mathrm{SiO}_{2}, 9 \% \mathrm{EtOAc}$-hexane) afforded $6(2.9 \mathrm{mg}, 4.5 \mathrm{mg}$ theoretical, 65%) as a col orless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{CN}, 400 \mathrm{MHz}\right) \delta 8.10-7.95(4 \mathrm{H}, \mathrm{m}), 7.70-7.55$ $(6 \mathrm{H}, \mathrm{m}), 7.50-7.41(10 \mathrm{H}, \mathrm{m}), 6.80(1 \mathrm{H}, \mathrm{m}), 6.61(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $11.5 \mathrm{~Hz}), 6.43(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=11.5 \mathrm{~Hz}), 6.18-6.09(2 \mathrm{H}, \mathrm{m}), 5.90$ $(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=15.0,4.9 \mathrm{~Hz}), 5.61(1 \mathrm{H}, \mathrm{m}), 4.45(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=$ $5.1,7.1,11.3 \mathrm{~Hz}), 4.38(1 \mathrm{H}$, ddd, J $=5.3,6.9,11.3 \mathrm{~Hz}), 4.32$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.9 \mathrm{~Hz}), 2.41-2.30(1 \mathrm{H}, \mathrm{m}), 2.22-2.13(1 \mathrm{H}, \mathrm{m})$, 1.05 (9H, s); IR (neat) $v_{\text {max }} 3070,2930,2855,1720,1450,1430$, 1315, 1275, 1110, 1070, $1025,710 \mathrm{~cm}^{-1}$; FABHRMS (NBA$\mathrm{Csl}) \mathrm{m} / \mathrm{z} 763.1836$ ($\mathrm{M}+\mathrm{Cs}^{+}, \mathrm{C}_{40} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{Si}$ requires 763.1856).
(2R)-1,2,4-Tris(Benzoyloxy)butane (7). A stream of $\mathrm{O}_{3} /$ O_{2} was bubbled through a solution of $6(0.73 \mathrm{mg}, 1.16 \mu \mathrm{~mol})$ in $\mathrm{CH}_{3} \mathrm{OH}(1.2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ for 3 min . After stirring for 15 $\mathrm{min}, \mathrm{NaBH}_{4}(5 \mathrm{mg}, 0.1 \mathrm{mmol})$ was added, and the mixture was allowed to warm to $25^{\circ} \mathrm{C}$ over 30 min . The reaction mixture was diluted with EtOAc (10 mL), washed with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(2 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. The residue was dissolved in THF $(0.5 \mathrm{~mL})$, and $\mathrm{Et}_{3} \mathrm{~N}(18 \mu \mathrm{~L}, 0.13 \mathrm{mmol}), \mathrm{BzCl}(5.0 \mu \mathrm{~L}, 43 \mu \mathrm{~mol})$, and a catalytic amount of DMAP were added to the solution at $25^{\circ} \mathrm{C}$. After stirring for $8 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was added, and the reaction mixture was stirred for 30 min . The mixture was diluted with EtOAc (10 mL), washed with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(1 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. PTLC (SiO_{2}, 17% EtOAc-hexane) gave 7 ($0.30 \mathrm{mg}, 62 \%$) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 8.04-7.98(6 \mathrm{H}, \mathrm{m}), 7.56-7.49$ (3H, m), 7.42-7.35 (6H, m), 5.74-5.69 (1H, m), 4.64 (1H, dd, $\mathrm{J}=3.5,13.5 \mathrm{~Hz}), 4.553(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.5,13.5 \mathrm{~Hz}), 4.548(1 \mathrm{H}$, $\mathrm{dt}, \mathrm{J}=11.5,6.0 \mathrm{~Hz}), 4.45(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=5.5,7.5,11.5 \mathrm{~Hz}$), $2.38-2.27(2 \mathrm{H}, \mathrm{m})$; IR (neat) $v_{\max } 1720,1600,1450,1315,1270$, 1175, 1110, 1070, $1025 \mathrm{~cm}^{-1}$; FABHRMS (NBA-Nal) m/z $441.1334\left(\mathrm{M}+\mathrm{Na}^{+}, \mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{6}\right.$ requires 441.1314).

Chiral phase HPLC analysis on an analytical Chiralcel OD-H column ($0.46 \times 20 \mathrm{~cm}, 20 \%$ 2-PrOH/hexane, $0.6 \mathrm{~mL} /$ $\mathrm{min})$ revealed that $7\left(\mathrm{t}_{\mathrm{R}}=11.4 \mathrm{~min}\right)$ derived from 1 eluted with the same retention time as authentic (2R)-7, $\mathrm{t}_{\mathrm{R}}=11.4$ min , and not $(2 \mathrm{~S})-7, \mathrm{t}_{\mathrm{R}}=18.4 \mathrm{~min}(\alpha=1.61)$.
(R)- and (\pm)-1,2,4-Tris(benzoyloxy)butane (7). A stirred solution of (R)- or (\pm)-1,2,4-butanetriol ($25.0 \mathrm{mg}, 0.236 \mathrm{mmol}$) in THF (3.0 mL) was treated with $\mathrm{Et}_{3} \mathrm{~N}(656 \mu \mathrm{~L}, 4.71 \mathrm{mmol})$, $\mathrm{BzCl}(328 \mu \mathrm{~L}, 2.83 \mathrm{mmol})$, and a catalytic amount of DMAP, and the mixture was stirred at $25^{\circ} \mathrm{C}$ overnight. $\mathrm{H}_{2} \mathrm{O}(1.0 \mathrm{~mL})$ was added and after 2 h , the reaction mixture was diluted with

EtOAc (20 mL), washed with saturated aqueous $\mathrm{NaHCO}_{3}(5$ mL) and saturated aqueous $\mathrm{NaCl}(5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. Chromatography $\left(\mathrm{SiO}_{2}\right.$, 10% EtOAc-hexane) afforded (R)- or (\pm)-7 ($98.8 \mathrm{mg}, 98.7 \mathrm{mg}$ theoretical, 100\%) as a col orless oil: both compounds displayed identical ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ and IR (neat) with 7 derived from 1; FABHRMS (NBA-Nal) m/z 441.1325 ($\mathrm{M}+$ $\mathrm{Na}^{+}, \mathrm{C}_{25} \mathrm{H}_{22} \mathrm{O}_{6}$ requires 441.1314); (R)-1,2,4-butanetriol $[\alpha]^{20_{\mathrm{D}}}$ +49.6 (c $0.500, \mathrm{CHCl}_{3}$).
(4-Methoxyphenyl)methyl Hex-5-enoate (10). Method A. A suspension of hex-5-enoic acid ($9,2038.00 \mathrm{~g}, 0.333 \mathrm{~mol}$), 4-methoxybenzyl chloride ($57.38 \mathrm{~g}, 0.366 \mathrm{~mol}$), and NaHCO_{3} $(55.96 \mathrm{~g}, 0.666 \mathrm{~mol})$ in DMF (190 mL) was stirred at $45^{\circ} \mathrm{C}$ for 2 days. Additional 4-methoxybenzyl chloride ($5.21 \mathrm{~g}, 0.0333$ mol) was added, and stirring was continued for another 1 day. The reaction mixture was cooled to $25^{\circ} \mathrm{C}$, diluted with EtOAC (300 mL), washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 100 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(100 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated in vacuo. Chromatography ($\mathrm{SiO}_{2}, 0-5 \% \mathrm{EtOAc}-$ hexane gradient elution) afforded $\mathbf{1 0}$ ($69.55 \mathrm{~g}, 89 \%$) as a dear colorless oil.

Method B. A solution of hex-5-enoic acid ($9,2{ }^{20} 11.4 \mathrm{~g}, 0.1$ mol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(250 \mathrm{~mL}, 0.4 \mathrm{M})$ was treated sequentially with saturated aqueous $\mathrm{NaHCO}_{3}(167 \mathrm{~mL}), \mathrm{Bu}_{4} \mathrm{NI}(48.0 \mathrm{~g}, 0.13 \mathrm{~mol})$, and 4 -methoxybenzyl chloride ($18.8 \mathrm{~g}, 0.12 \mathrm{~mol}$), and the mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 28 h . The layers were separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(4 \times 50 \mathrm{~mL})$. The organic layers were combined, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated in vacuo giving a white solid. This material was triturated with hexanes and filtered, washing the solid with hexanes ($4 \times 50 \mathrm{~mL}$). The filtrate was concentrated in vacuo. Chromatography ($\mathrm{SiO}_{2}, 3.5 \times 15 \mathrm{~cm}$, $0-10 \%$ EtOAc-hexane gradient elution) afforded 10 (11.5 g , 22.1 g theoretical, 52%) as a clear oil: $\mathrm{R}_{\mathrm{f}} 0.45$ (10% EtOAchexane); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{MHz}\right) \delta 7.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6$ $\mathrm{Hz}), 6.87(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 5.74(1 \mathrm{H}$, dddd, $\mathrm{J}=6.8,6.8$, $10.2,17.2 \mathrm{~Hz}), 5.03(3 \mathrm{H}, \mathrm{m}), 4.97-4.92(1 \mathrm{H}, \mathrm{m}), 3.79(3 \mathrm{H}, \mathrm{s})$, $2.32(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}), 2.06(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=7.2 \mathrm{~Hz}), 1.71(2 \mathrm{H}, \mathrm{p}$, $\left.\mathrm{J}=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl} 3,100 \mathrm{MHz}\right) \delta 173.4,159.5,137.6$, 130.0, 128.1, 115.3, 113.9, 65.9, 55.2, 33.6, 33.1, 24.0; IR (neat) $\nu_{\max }$ 2943, 1733, 1610, 1512, 1246, $1164 \mathrm{~cm}^{-1}$; FABHRMS (NBA-Nal) m/z $257.1159\left(\mathrm{M}+\mathrm{Na}^{+}, \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}\right.$ requires 257.1154).
(4-Methoxyphenyl)methyl (R)-5,6-Dihydroxyhexanoate (11). A solution of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(19.76 \mathrm{~g}, 60 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(8.3$ $\mathrm{g}, 60 \mathrm{mmol}), \mathrm{NaHCO}_{3}(5.04 \mathrm{~g}, 60 \mathrm{mmol})$, and (DHQD) $2_{2}-\mathrm{AQN}$ ($857 \mathrm{mg}, 1 \mathrm{mmol}$) in t-BuOH (100 mL) and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was stirred at $25^{\circ} \mathrm{C}$, warmed slightly to dissolve the materials, and recool ed to $25^{\circ} \mathrm{C}$. The mixture was treated with $\mathrm{K}_{2} \mathrm{OsO}_{2}-$ $(\mathrm{OH})_{2}(134 \mathrm{mg}, 0.4 \mathrm{mmol})$ and immediately cooled to $0{ }^{\circ} \mathrm{C}$. When precipitates appeared, $\mathbf{1 0}(4.68 \mathrm{~g}, 20 \mathrm{mmol})$ was added at once, and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 48 h . Solid $\mathrm{Na}_{2} \mathrm{SO}_{3}(16 \mathrm{~g})$ was added slowly over 10 min at $0^{\circ} \mathrm{C}$. The mixture was warmed to $25^{\circ} \mathrm{C}$ and stirred for 45 min . The mixture was extracted with EtOAc $(3 \times 100 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered, and the solvent was removed in vacuo. Chromatography ($\mathrm{SiO}_{2}, 3.5$ $\times 15 \mathrm{~cm}, \mathrm{EtOAc}$) afforded $\mathbf{1 1}$ ($3.95 \mathrm{~g}, 5.00 \mathrm{~g}$ theoretical, 79\%) as a white sol id which was 88% ee as determined by preparation of the bis-(R)-M osher ester described below. One recrystallization ($\mathrm{Et}_{2} \mathrm{O}$) provided enantiomerically pure (>98\% ee) 11 ($2.55 \mathrm{~g}, 5.00 \mathrm{~g}$ theoretical, 51%) as a white solid: $\mathrm{R}_{\mathrm{f}} 0.5$ (EtOAc); mp 57-59 ${ }^{\circ} \mathrm{C}$ (white plates, $\mathrm{Et}_{2} \mathrm{O}$); $[\alpha]^{22} \mathrm{D}+2.1$ (c 0.06 , $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.29(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz})$, $6.89(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 5.05(2 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}, \mathrm{s}), 3.72-3.66$ $(1 \mathrm{H}, \mathrm{m}), 3.65-3.60(1 \mathrm{H}, \mathrm{m}), 3.46-3.40(1 \mathrm{H}, \mathrm{m}), 2.39(2 \mathrm{H}, \mathrm{dt}$, $\mathrm{J}=3.0,7.3 \mathrm{~Hz}), 2.24(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.3 \mathrm{~Hz}, \mathrm{CHOH}), 1.89(1 \mathrm{H}, \mathrm{t}$, $\left.\jmath=5.7 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{OH}\right), 1.84-1.66(2 \mathrm{H}, \mathrm{m}), 1.48-1.43(2 \mathrm{H}, \mathrm{m})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 173.7,159.6,130.1,128.0,113.9$, $71.6,66.6,66.1,55.3,34.0,32.3,20.7$; IR (neat) $v_{\max } 3372,2933$, $2871,1728,1610,1518,1463,1254 \mathrm{~cm}^{-1}$; FABHRMS (NBA$\mathrm{Nal}) \mathrm{m} / \mathrm{z} 291.1212\left(\mathrm{M}+\mathrm{Na}^{+}, \mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5}\right.$ requires 291.1208). Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{5}$: $\mathrm{C}, 62.67 ; \mathrm{H}, 7.51$. Found: $\mathrm{C}, 62.78$; H, 7.39 .
(4-Methoxyphenyl)methyl (R)-5,6-Bis[[(S)- α-methoxy-α-(trifluoromethyl)phenyl]acetoxy]hexanoate (bis-Mosh-
er ester of 11). A solution of $\mathbf{1 1}(5.8 \mathrm{mg}, 21.6 \mu \mathrm{~mol})$ and DMAP ($7.9 \mathrm{mg}, 64.9 \mu \mathrm{~mol}$) in THF ($108 \mu \mathrm{~L}, 0.2 \mathrm{M}$) was treated with (R)-M osher's chloride ((R)-MTPA-CI, $12.6 \mathrm{mg}, 49.8 \mu \mathrm{~mol}$, $9.4 \mu \mathrm{~L}$) at $25^{\circ} \mathrm{C}$, and the reaction mixture was stirred for 4 h . The reaction solvent was removed in vacuo. Chromatography ($\mathrm{SiO}_{2}, 0.5 \times 5 \mathrm{~cm}, 25-50 \% \mathrm{EtOAc}$-hexane gradient elution) afforded the bis-M osher ester of $\mathbf{1 1}(6.0 \mathrm{mg}, 15.1 \mathrm{mg}$ theoretical, 40%): $\mathrm{R}_{\mathrm{f}} 0.4$ (25\% EtOAc-hexane); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 7.48(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}), 7.43(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz})$, $7.40-7.31(6 \mathrm{H}, \mathrm{m}), 7.28(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}), 6.88(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $8.7 \mathrm{~Hz}), 5.31-5.30(1 \mathrm{H}, \mathrm{m}), 5.04(2 \mathrm{H}, \mathrm{s}), 4.53(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=2.9$, $12.4 \mathrm{~Hz}), 4.24(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=5.1,12.4 \mathrm{~Hz}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.43$ $(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.1 \mathrm{~Hz}), 3.41(3 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.0 \mathrm{~Hz}), 2.29(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $6.9 \mathrm{~Hz}), 1.73-1.57(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 376 \mathrm{MHz}\right) \delta$ $-68.10,-68.13$; ${ }^{19} \mathrm{~F}$ NMR for racemic material $\left(\mathrm{CDCl}_{3}, 376\right.$ MHz) $\delta-67.70,-67.93,-68.10,-68.13$; FABHRMS (NBACsl) $\mathrm{m} / \mathrm{z} 833.1169$ ($\mathrm{M}+\mathrm{Cs}^{+}, \mathrm{C}_{34} \mathrm{H}_{34} \mathrm{~F}_{6} \mathrm{O}_{9}$ requires 833.1161).
(4-Methoxyphenyl)methyl (R)-6-[(tert-Butyldiphenyl-silyl)oxy]-5-hydroxyhexanoate (12). A solution of 11 (500 $\mathrm{mg}, 1.86 \mathrm{mmol}$) in DMF ($3.7 \mathrm{~mL}, 0.5 \mathrm{M}$) was treated sequentially with imidazole ($279 \mathrm{mg}, 4.1 \mathrm{mmol}$) and TBDPSCI (564 $\mathrm{mg}, 2.05 \mathrm{mmol}, 534 \mu \mathrm{~L}$), and the mixture was stirred at $25^{\circ} \mathrm{C}$ under Ar for 15 h . The reaction mixture was poured into $\mathrm{H}_{2} \mathrm{O}$ $(40 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(50 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and filtered, and the solvent was removed in vacuo. Chromatography $\left(\mathrm{SiO}_{2}, 2 \times 10 \mathrm{~cm}, 10-25 \% \mathrm{EtOAc}\right.$-hexane gradient elution) afforded 12 ($840 \mathrm{mg}, 941 \mathrm{mg}$ theoretical, 89\%) as a clear oil: $R_{f} 0.5$ (25% EtOAc-hexane); $[\alpha]^{22}{ }_{\mathrm{D}}-0.92$ (c 2.1, $\left.\mathrm{CHCl}_{3}\right)$; ${ }^{1 \mathrm{H} N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.72-7.67(4 \mathrm{H}, \mathrm{m}), 7.48-$ $7.39(6 \mathrm{H}, \mathrm{m}), 7.30(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}), 6.89(2 \mathrm{H}, \mathrm{ddd}, \mathrm{J}=2.9$, $2.9,8.6 \mathrm{~Hz}), 5.06(2 \mathrm{H}, \mathrm{s}), 3.80(3 \mathrm{H}, \mathrm{s}), 3.77-3.72(1 \mathrm{H}, \mathrm{m}), 3.67$ $(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=3.5,10.1 \mathrm{~Hz}), 3.51(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.4,10.1 \mathrm{~Hz})$, $2.54(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.36(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 1.85-1.67(2 \mathrm{H}, \mathrm{m})$, $1.48-1.41(2 \mathrm{H}, \mathrm{m}), 1.10(9 \mathrm{H}, \mathrm{s})$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 173.3, 159.5, 135.5, 133.0, 130.0, 129.8, 128.1, 127.7, 113.8, 71.4, 67.8, 65.8, 55.1, 34.1, 31.9, 26.8, 20.9, 19.1; IR (neat) $v_{\text {max }}$ 3503, 3070, 2931, 2857, 1734, 1612, 1516, 1428, 1248, 1112 $\mathrm{cm}^{-1} ;$ FABHRMS (NBA-CsI) m/ z 639.1546 (M + Cs ${ }^{+}, \mathrm{C}_{30} \mathrm{H}_{38} \mathrm{O}_{5^{-}}$ Si requires 639.1543).
(R)-6-[[(tert-ButyIdiphenyIsilyl)oxy]methyl]-3,4,5,6-tet-rahydro-2H-pyran-2-one (13). A solution of 12 (100 mg , 0.198 mmol) in anisole ($107 \mathrm{mg}, 107 \mu \mathrm{~L}, 1.9 \mathrm{M}$) was treated with $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(90 \mathrm{mg}, 80 \mu \mathrm{~L})$, and the mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 30 min . The $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ was evaporated under a N_{2} stream (30 min) and in vacuo (30 min). Chromatography ($\mathrm{SiO}_{2}, 2.5 \times 15 \mathrm{~cm}, 10-25 \% \mathrm{EtOAc}-$ hexane gradient elution) afforded $\mathbf{1 3}$ ($55.0 \mathrm{mg}, 72.9 \mathrm{mg}$ theoretical, 75%) identical in all respects with authentic racemic material: ${ }^{24} R_{f} 0.5(25 \%$ EtOAc-hexane); $[\alpha]^{22} \mathrm{D}-12.5$ (c 1.6, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, 250 MHz) $\delta 7.70-7.60(6 \mathrm{H}, \mathrm{m}), 7.50-7.35$ (9H, m), 4.45-4.35 (1 H, dddd, J $=4.7,4.8,5.1,9.4 \mathrm{~Hz}$), $3.90-3.70(2 \mathrm{H}, \mathrm{m}), 2.70-$ $2.40(2 \mathrm{H}, \mathrm{m}), 2.05-1.70(4 \mathrm{H}, \mathrm{m}), 1.05(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}, 100 MHz) $\delta 171.2,135.5,132.9,129.8,127.7,80.2,65.6,26.8$, 24.4, 19.2, 18.3; IR (neat) $v_{\max } 3070,2930,2857,1737,1241$, $1108 \mathrm{~cm}^{-1}$; FABHRMS (NBA-Nal) m/z 391.1696 (M + Na+, $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$ requires 391.1705).
(3RS,6R)-6-[[(tert-Butylphenylsilyl)oxy]methyl]-3-(phen-ylselenyl)-3,4,5,6-tetrahydro-2H-pyran-2-one (14). A solution of $\mathbf{1 3}(350 \mathrm{mg}, 0.95 \mathrm{mmol})$ in THF (3 mL) was added slowly to a solution of freshly prepared LDA ($1.05 \mathrm{mmol}, 3.0 \mathrm{~mL}$ THF) at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h . $\operatorname{PhSeBr}(269 \mathrm{mg}, 1.14 \mathrm{mmol})$ in THF (2 mL) was added, and the solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 h . The reaction mixture was poured into saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and concentrated in vacuo. Chromatography ($\mathrm{SiO}_{2}, 2.5 \times 15 \mathrm{~cm}, 10-50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}-$ benzene) provided 14 ($249 \mathrm{mg}, 498 \mathrm{mg}$ theoretical, 50\%) as a 2:1 mixture of diastereomers: 83 mg of the less polar isomer; $\mathrm{R}_{\mathrm{f}} 0.29$ ($50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$-benzene); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 250 \mathrm{MHz}$) δ 7.70-7.62 (6H, m), 7.45-7.32 (9H, m), 4.47 (1 H, dddd, J = $4.4,4.6,4.6,9.1 \mathrm{~Hz}), 3.97(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}), 3.75(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $6.3 \mathrm{~Hz}), 2.42-2.28(1 \mathrm{H}, \mathrm{m}), 2.10-1.95(2 \mathrm{H}, \mathrm{m}), 1.85-1.75(1 \mathrm{H}$, m), $1.05(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 170.1,135.8$,
135.6, 135.5, 133.0, 132.8, 129.9, 129.3, 128.9, 127.8, 79.5, 65.4, 26.8, 26.2, 24.0; IR (neat) $v_{\max } 3052,2929,2856,1732,1428$, 1244, $1113 \mathrm{~cm}^{-1}$; FABHRMS (NBA-Nal) m/ z 525.1379 ($\mathrm{M}+$ $\mathrm{H}^{+}, \mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SeSi}$ requires 525.1364); and 166 mg of the more polar isomer; $\mathrm{R}_{\mathrm{f}} 0.2\left(50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-benzene); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $250 \mathrm{MHz}) \delta 7.70-7.65(6 \mathrm{H}, \mathrm{m}), 7.45-7.30(9 \mathrm{H}, \mathrm{m}), 4.45-4.35$ (1 H , dddd, J $=5.0,5.0,8.8,10.4 \mathrm{~Hz}$), $4.03(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}$), $3.76(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=5.0 \mathrm{~Hz}), 2.30-2.10(3 \mathrm{H}, \mathrm{m}), 1.92-1.82(1 \mathrm{H}$,
 135.6, 135.5, 133.1, 132.9, 129.8, 129.3, 128.7, 127.8, 80.8, 65.5, 39.8, 26.8, 26.6; IR (neat) $\nu_{\max } 3070,2929,2856,1731,1427$, 1240, $1113 \mathrm{~cm}^{-1}$; FABHRMS (NBA-Nal) m/ z 525.1380 ($\mathrm{M}+$ $\mathrm{H}^{+}, \mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{SeSi}$ requires 525.1364).
(3RS,6R)-6-(Hydroxymethyl)-3-(phenylselenyl)-3,4,5,6-tetrahydro-2H-pyran-2-one (15). A solution of 14 (98 mg, $0.187 \mathrm{mmol})$ in THF (5.0 mL) was treated with HOAc ($62 \mu \mathrm{~L}$, 1.1 mmol) and $\mathrm{Bu}_{4} \mathrm{NF}$ hydrate (91 mg), and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was diluted with EtOAc (20 mL), washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, and saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), filtered, and concentrated in vacuo. Chromatography $\left(\mathrm{SiO}_{2}, 50 \%\right.$ EtOAc-hexane) provided 15 ($36.2 \mathrm{mg}, 53.2$ mg theoretical, 68\%) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR (CDCl 3,400 $\mathrm{MHz}) \delta 7.67-7.61(2 \mathrm{H}, \mathrm{m}), 7.37-7.27(3 \mathrm{H}, \mathrm{m}), 4.52-4.46$ (0.5 $\mathrm{H}, \mathrm{m}), 4.46-4.39(0.5 \mathrm{H}, \mathrm{m}), 4.02(0.5 \mathrm{H}$, ddd, $\mathrm{J}=1.0,4.1,5.2$ $\mathrm{Hz}), 3.95(0.5 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}), 3.75(1 \mathrm{H}, \mathrm{br} \mathrm{d}, \mathrm{J}=12.2 \mathrm{~Hz})$, $3.62(1 \mathrm{H}$, ddd, $\mathrm{J}=2.3,5.4,12.2 \mathrm{~Hz}), 2.38-1.67(5 \mathrm{H}, \mathrm{m})$; IR (neat) $v_{\max } 3400,2930,1720,1440,1250,1190,1060,1020$, 740, $690 \mathrm{~cm}^{-1}$; FABHRMS (NBA-Nal) m/ z 287.0180 (M + $\mathrm{H}^{+}, \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3}$ Se requires 287.0186).
(R)-6-(Hydroxymethyl)-5,6-dihydro-2H-pyran-2-one (16). A stirred solution of 15 ($45.4 \mathrm{mg}, 0.159 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5.0 $\mathrm{mL})$ and $\mathrm{H}_{2} \mathrm{O}(100 \mu \mathrm{~L})$ was treated with $35 \% \mathrm{H}_{2} \mathrm{O}_{2}(30.9 \mu \mathrm{~L}$, 0.318 mmol). After 1 h at $25^{\circ} \mathrm{C}$, the mixture was treated with additional $35 \% \mathrm{H}_{2} \mathrm{O}_{2}(30.9 \mu \mathrm{~L}, 0.318 \mathrm{mmol})$ and stirred for 1 h . The organic phase was separated, and the aqueous layer was extracted with $\mathrm{CHCl}_{3}(3 \times 15 \mathrm{~mL})$. The organic phase and the extracts were combined, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, and concentrated. Chromatography $\left(\mathrm{SiO}_{2}, 50 \% \mathrm{EtOAc}\right.$-hexane) provided 16 ($17.4 \mathrm{mg}, 20.5 \mathrm{mg}$ theoretical, 85\%) as a colorless oil: $[\alpha]^{20_{\mathrm{D}}}+160\left(\mathrm{c} 0.850, \mathrm{CHCl}_{3}\right)$ lit. $[\alpha]^{26} \mathrm{D}+175\left(\mathrm{c} 0.92, \mathrm{CHCl}_{3}\right)$ identical in all respects (NMR,IR, MS) with authentic material. ${ }^{23}$
(R)-6-[(E)-3-0xo-1-buten-1-yl]-5,6-dihydro-2H-pyran-2one (8). A solution of oxalyl chloride ($28 \mu \mathrm{~L}, 0.32 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was treated with DMSO ($27 \mu \mathrm{~L}, 0.38 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$ under Ar , and the mixture was stirred for 15 min . A solution of $\mathbf{1 6}(4.0 \mathrm{mg}, 32 \mu \mathrm{~mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added to the solution, and the mixture was stirred for 15 min . $E t_{3} \mathrm{~N}(156 \mu \mathrm{~L}, 1.12 \mathrm{mmol})$ was added to the mixture, and stirring was continued for 10 min at $-78{ }^{\circ} \mathrm{C}$ and 5 min at 0 ${ }^{\circ} \mathrm{C}$. The reaction mixture was treated with 1-(triphenylphos-phoranylidene)-2-propanone at $0{ }^{\circ} \mathrm{C}$ for 30 min and passed through a plug of SiO_{2} (50\% EtOAc-hexane). The material obtained was further purified by PTLC ($\mathrm{SiO}_{2}, 60 \% \mathrm{EtOAc}-$ hexane) to give 8 ($2.7 \mathrm{mg}, 5.2 \mathrm{mg}$ theoretical, 52\%) as a colorless oil: $[\alpha]^{20_{D}}+201$ (c $0.110, \mathrm{CHCl}_{3}$), lit. ${ }^{10}[\alpha]_{\mathrm{D}}+216.8$ (c 1.16, CHCl_{3}); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 6.90(1 \mathrm{H}$, ddd, J $=$ $3.0,6.0,10.0 \mathrm{~Hz}), 6.74(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=4.5,16.0 \mathrm{~Hz}), 6.43(1 \mathrm{H}$, dd, J $=1.5,16.0 \mathrm{~Hz}$), 6.08 (1 H , ddd, J $=1.0,2.5,10.0 \mathrm{~Hz}$), $5.12(1 \mathrm{H}$, dddd, $\mathrm{J}=1.5,4.0,4.5,11.0 \mathrm{~Hz}), 2.56(1 \mathrm{H}$, dddd, J $=1.0,4.0,6.0,18.5 \mathrm{~Hz}), 2.44(1 \mathrm{H}$, dddd, $\mathrm{J}=2.5,3.0,11.0$, $18.5 \mathrm{~Hz}), 2.28(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 197.5$, 163.0, 144.1, 140.7, 130.5, 121.7, 75.6, 29.0, 28.0; IR (neat) $v_{\max }$ 2920, 1720, 1700, 1675, 1360, 1240, 1090, 1060, $805 \mathrm{~cm}^{-1}$; FABHRMS (NBA-Nal) m/z $189.0532\left(\mathrm{M}+\mathrm{Na}^{+}, \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{3}\right.$ requires 189.0528).

Acknowledgment. We gratefully acknowledge the financial support of the National Institutes of Health (CA 42056), The Skaggs Institute for Chemical Biology, and the sabbatical leave of M.H. from Tanabe Seiyaku Co., Ltd. (1996-1997). We thank Warner-Lambert/ Parke-Davis for a sample of fostriecin with which this work was conducted, and we thank the Sharpless group for the (DHQD) ${ }_{2}-\mathrm{AQN}$ ligand and the use of a Chiralcel OD-H analytical HPLC column.

Supporting Information Available: ${ }^{1} \mathrm{H}$ NMR spectra of characterized compounds are provided (20 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.
J O962166H

[^0]: ${ }^{\otimes}$ Abstract published in AdvanceACS Abstracts, February 15, 1997.
 (1) Tunac, J. B.; Graham, B. D.; Dobson, W. E. J. Antibiot. 1983, 36, 1595. Stampwala, S. S.; Bunge, R. H.; Hurley, T. R.; Willmer, N. E.; Brankiewicz, A. J.; Steinman, C. E.; Smitka, T. A.; French, J. C. J . Antibiot. 1983, 36, 1601.
 (2) J ackson, R. C.; Fry, D. W.; Boritzki, T. J .; Roberts, B. J.; Hook, K. E.; Leopold, W. R. Adv. Enzyme Regul. 1985, 23, 193.
 (3) Boritzki, T. J .; Wolfard, T. S.; Besserer, J. A.; J ackson, R. C.; Fry, D. W. Biochem. Pharmacol. 1988, 37, 4063.
 (4) Topoisomerase II inhibitors which induce G2 arrest: (a) etoposide: Chen, G. L.; Yang, L.; Rowe, T. C.; Halligan, B. D.; Tewey, K. M.; Liu, L. F. J. Biol. Chem. 1984, 259, 13560. (b) Doxorubicin: Tewey, K. M.; Rowe, T. C.; Yang, L.; Halligan, B. D.; Liu, L. F. Science 1984, 266, 466. (c) Amsacrine: Nelson, E. M.; Tewey, K. M.; Liu, L. F. Proc. Natl. Acad. Sci. U.S.A. 1984, 81, 3161.
 (5) For a review: Murray, A. W. Nature 1992, 359, 599.
 (6) Roberge, M.; Tudan, C.; Hung, S. M. F.; Harder, K. W.; J irik, F. R.; Anderson, H. Cancer Res. 1994, 54, 6115.
 (7) Ho, D. T.; Roberge, M. Carcinogenesis 1996, 17, 967.
 (8) For a review of protein serine/threonine phosphatases: Ingebritsen, T. S.; Cohen, P. Eur. J . Biochem. 1983, 132, 255.
 (9) Other inhibitors of protein serine/threonine phosphatases: (a) okadaic acid: Tachibana, K.; Scheuer, P. J .; Tsukitani, Y.; Kikuchi, Y.; Van Engen, D.; Clardy, j .; Gopichand, Y.; Schmitz, F.J.J. Am. Chem. Soc. 1981, 103, 2469. (b) Microcystins: Botes, D.; Tuinman, A.; Wessels, P.; Viljoen, C.; Kruger, H.; Williams, D. H.; Santikarn, S.; Smith, R.; Hammond, S. J. Chem. Soc., Perkin Trans. 1 1984, 2311. Painuly, P.; Perez, R.; Fukai, T.; Shimizu, Y. Tetrahedron Lett. 1988, 29, 11. (c) Calyculin A: Kato, Y.; Fusetani, N.; Matsunaga, S.; Hashimoto, K.; Fujita, S.; Furuya, T. J. J. Am. Chem. Soc. 1986, 108, 2780. (d) Nodularin: Botes, P. B.; Wessels, P. L.; Kruger, H.; Runnegar, M. T. C.; Santikarn, S.; Smith, R. J.; Barna, J. C. J.; Williams, D. H. J. Chem. Soc., Perkin Trans. 1 1985, 2747. Rinehart, K. L.; Harada, K.; Namikoshi, M.; Chen, C.; Harvis, C.; Munro, M. H. G.; Blunt, J .; Mulligan, P.; Beasley, V.; Dahlem, A.; Carmichael, W. J . Am. Chem. Soc. 1988, 110, 8557. (e) Tautomycin: Cheng, X.-C.; Ubukata, M.; Isono, K. J . Antibiot. 1990, 43, 809. (f) Cantharidine: Li, Y.-M.; Casida, J. E. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 11867. (g) Motuporin: Valentekovich, R. J.; Schreiber, S. L. J. Am. Chem. Soc. 1995, 117, 9069.

[^1]: (10) Early work assigned the absolute configuration at C5 as R, see: Hokanson, G. C.; French, J. C. J. Org. Chem. 1985, 50, 462.
 (11) J ust, G.; O'Connor, B. Tetrahedron Lett. 1988, 29, 753.
 (12) This closure could also be effected by treatment with EDCI or DCC, but provided 2 with lower purity due to the difficulty of removing the reaction byproducts. See also: Ozasa, T.; Tanaka, K.; Sasamata, M.; Kaniwa, H.; Shimizu, M.; Matsumoto, H.; I wanami, M. J . Antibiot. 1989, 42, 1339.

[^2]: (13) Egan, W.; Schneerson, R.; Werner, K. E.; Zon, G. J . Am. Chem. Soc. 1982, 104, 2898. Broeders, N. L. H. L.; Van der Heiden, A. P.; Pecters, I.; J anssen, H. M.; K oole, L. H. J . Am. Chem. Soc. 1992, 114, 9624.
 (14) Meyers, A. I.; Lawson, J. P. Tetrahedron Lett. 1982, 23, 4883. For 5: FABHRMS (NBA-Nal) m/z $455.2056\left(\mathrm{M}^{+}+\mathrm{Na}^{+}, \mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{7}\right.$ requires 455.2046).
 (15) Rychnovsky, S. D.; Skalitzky, D. J. Tetrahedron Lett. 1990, 31, 945. Evans, D. A.; Rieger, D. L.; Gage, J. R. Tetrahedron Lett. 1990, 31, 7099.

[^3]: (16) The work is al so consistent with and would seem to unambiguously confirm the relative and absolute configuration assignments for the leustroducsins, ${ }^{17}$ phoslactomycins, ${ }^{18}$ and phospholine ${ }^{18}$ whose stereochemistry was tentatively assigned based on the chiroptical properties of Mosher esters of the al cohols. See: Shibata, T.; K urihara, S.; Y oda, K.; Haruyama, H. Tetrahedron 1995, 51, 11999.
 (17) Leustroducsins: K ohama, T.; Enokita, R.; Okazaki, T.; Miyaoka, H.; Torikata, A.; Inukai, M.; Kaneko, I.; Kagasaki, T.; Sakaida, Y.; Satoh, A.; Shiraishi, A. J. Antibiot. 1993, 46, 1503. K ohama, T.; Nakamura, T.; Kinoshita, T.; Kaneko, I.; Shiraishi, A. J. Antibiot. 1993, 46, 1512.
 (18) Phoslactomycins: Fushimi, S.; Nishikawa, S.; Shimazu, A.; Seto, H. J. Antibiot. 1989, 42, 1019. Fushimi, S.; Furihata, K.; Seto, H. J. Antibiot. 1989, 42, 1026.

[^4]: (19) K olb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483.
 (20) Gilman, H.; Kirby, R. H. Org. Synth. 1941, 1, 361.
 (21) Becker, H.;'Sharpless, K. B. Angew. Chem., Int. Ed. Engl. 1996, 35, 448.
 (22) The corresponding methyl, tert-butyl, and benzyl esters were also examined but failed to provide a crystalline diol capable of optical purity enrichment through recrystallization.
 (23) Tsubuki, M.; Kanai, K.; H onda, T. Heterocycles 1993, 35, 281.

[^5]: (24) Taylor, R. J. K.; Wiggins, K.; Robinson, D. H. Synthesis 1990, 589.
 (25) Characterization is provided in the Supporting Information.

